如何在九方形里找到准确的数字 就我使用九方形方法的经验来说,时间&价格必须在一个凶相位 [2]平衡。这个凶相位是45°,90°,135°,180°,225°,270°,315°, 360°或0°。最重要的是直角或90°的倍角(0,90°,180°,270°)。用过去的时间和价格开始的话,我发现,过去365天里的最低低点和最高高点对这些平衡点影响最大。这项技术可以用来获得日内交易的水平支撑和阻力位。 当你预测作为周期或时间计数的结果,某一天将发生趋势变化,这是极其有用的。 另一方面,我不赞同你使用下面的公式:MOD(180×SQRT [3](价格差或时间差)-225)。假设你用这个公式,它应该读作MOD 360 (价格差或时间变化)1/2×180-225)。 这是卡尔.弗蒂尔的公式。但是,这个公式假设偶数平方落在135°线上,奇数平方落在315°线上。实际的江恩九方图不是这样。如果你让中心从1开始,奇数平方将落在315°线上,但是偶数平方(16,36,64,100,144)将逐步地靠近135°线。例如,实际的九方形上,16在112.50°线上,36在120°线上,64在123.75°线上,100在126°线上,144在127.50°线上。 中心从0开始的【九方形上】,偶数平方将在135°线上连成一条直线,奇数平方将会有偏差 [4]。这种错误或空转重要吗?毕竟,根据上述对360取余的函数,不能绘制或者实际构造出一个九方形图。如果你想使用基于威廉.D.江恩印制的九方图的计算,如下公式对你的研究很有用: 圈号=ROUND(((SQRT(价格)- 0.22 )/2),0) 如果你运算上面的公式,【就得到】数390是在第10圈。 315°线是整个图表上最精确的角度线,用于计算所有其他值。奇数平方都在这条角度线上。 315°【上的数】=(圈号×2+1)2。例如,390在第10圈,所以315°上的数字是(10×2+1)2,或者直接写成(21)2=441。 某圈的零角度【上的数】=(圈号×2+1)2 - (7×圈号)。所以,你就得到441-70=371。这数字就是用来计算第一个值390所在的角度【上的数字】。 角度=(价格-零角度上的数)/(圈号/45)。所以,我们得到(390-371)/(10/45)=85.5°。 你偶尔可能必须调整角度计算,因为有些时候,当你有一个接近下一圈0°的数时,你会得到负数。例如,我们知道371是在0°上的数。如果你想要找到370.5所在的角度,就得到(370.5-371)/(10/45)=-2.25°。如果你得到负数,就加上360°来调整它。所以,这实际是357.75°。 简单地调整一下这个公式,它就【变】成:if 角度<0 then 角度=角度+360 else 角度=角度 [5] 为了得到九方形里的其他值,使用这个公式: (圈号×2+1)2 -(7×圈号)+((圈号/45)×角度) 在这个公式里的角度是你的输入值。例如,我们知道390是在85.5°上。如果我们想知道与它成45°的另一个数,我们就对130.50°(85.5°+45°)产生了兴趣。在上述公式中输入这个值,就得到:(10×2+1)2 -(7×10)+((10/45)×130.5)。简化一点,就得到371+28.99971=399.99,它与390成45°。请记住,如果你加上或减去一个值,使得原来的角度(85.5°)比360°大或比0°小,那么你就换一圈。例如,如果从85.5°减去90°得到一个直角相位,就得到-4.5°。加上360°就得到前一圈里的355.5°。我们在公式里使用圈号10,但是,在计算中我们必须使用圈号9。相似的,如果将85.5°加上315°,就得到400.50°,它是下一圈的40.5°。所以,你必须在计算中使用圈号11。 丹尼尔.费拉拉 |