【阳光飞狐__与财富同行】

标题: 如何计算九方形的角度stu译 [打印本页]

作者: 天蓝蓝    时间: 2009-5-26 20:50
标题: 如何计算九方形的角度stu译
如何计算九方形的角度
用“P”来代表价格、时间或其他任何东西的数字。
于是:
1. 度数  =MOD(180×P1/2 - 225),360)(角度线度数)[1]
我们取数字的平方根,然后将它乘以180,这个公式对中心为0的图表是有效的。
2. 度数  =MOD(180×(P-1)1/2 -225),360)
公式1假设九方形的中心是0。但是,大多数九方形图表的中心为1。我们仍然可以使用公式1,【但是】做一点小的修改,我们首先从P中减去1。
请注意:MOD是MODULO的简写,它的意思是将一个数除以另一个数(在本例中是360),并去掉【商的】整数部分所得到的结果。例如:MOD(1632,360)=0.533。
3. 度数差=MOD(180×(P1 1/2 –P2 1/2),360)
某些时候,我们只对两个数字的差值(度数)感兴趣。在这种情况下,我们将这两个数字的平方根相减,再乘以180,就得到度数值。如果我们愿意,使用MOD函数,这也可以还原成0°~360°之间的数字。
4. P’=(P1/2 +inc)2
还有些时候,我们对将某个度数加上我们的数字感兴趣。在九方形里,2等同于360°,因此1等于180°,1/2等同于90°。
比如说,我们想要找到比P大90°的数字。求P的平方根,然后加上增量0.5(因为它等于九方形里的90°),然后将它再次求平方,就得到结果P’。
上面介绍的公式不能在实际的九方形里给出准确的数字。它是一个近似值(反之,或者也许更精确)。我经常运用上述公式获得很大成功。但是,尽管如此,有些人一定要求在实际九方形中的某个特定单元里找到准确的数字。经过更多努力,这可以做到,正如丹尼尔.费拉拉在邮件里解释的一样:
如何在九方形里找到准确的数字
    就我使用九方形方法的经验来说,时间&价格必须在一个凶相位[2]平衡。这个凶相位是45°,90°,135°,180°,225°,270°,315°, 360°或0°。最重要的是直角或90°的倍角(0,90°,180°,270°)。用过去的时间和价格开始的话,我发现,过去365天里的最低低点和最高高点对这些平衡点影响最大。这项技术可以用来获得日内交易的水平支撑和阻力位。
    当你预测作为周期或时间计数的结果,某一天将发生趋势变化,这是极其有用的。
    另一方面,我不赞同你使用下面的公式:MOD(180×SQRT[3](价格差或时间差)-225)。假设你用这个公式,它应该读作MOD 360 (价格差或时间变化)1/2×180-225)。
    这是卡尔.弗蒂尔的公式。但是,这个公式假设偶数平方落在135°线上,奇数平方落在315°线上。实际的江恩九方图不是这样。如果你让中心从1开始,奇数平方将落在315°线上,但是偶数平方(16,36,64,100,144)将逐步地靠近135°线。例如,实际的九方形上,16在112.50°线上,36在120°线上,64在123.75°线上,100在126°线上,144在127.50°线上。
    中心从0开始的【九方形上】,偶数平方将在135°线上连成一条直线,奇数平方将会有偏差[4]。这种错误或空转重要吗?毕竟,根据上述对360取余的函数,不能绘制或者实际构造出一个九方形图。如果你想使用基于威廉.D.江恩印制的九方图的计算,如下公式对你的研究很有用:
    圈号=ROUND(((SQRT(价格)- 0.22 )/2),0)
    如果你运算上面的公式,【就得到】数390是在第10圈。
    315°线是整个图表上最精确的角度线,用于计算所有其他值。奇数平方都在这条角度线上。
    315°【上的数】=(圈号×2+1)2。例如,390在第10圈,所以315°上的数字是(10×2+1)2,或者直接写成(21)2=441。
    某圈的零角度【上的数】=(圈号×2+1)2  - (7×圈号)。所以,你就得到441-70=371。这数字就是用来计算第一个值390所在的角度【上的数字】。
    角度=(价格-零角度上的数)/(圈号/45)。所以,我们得到(390-371)/(10/45)=85.5°。
    你偶尔可能必须调整角度计算,因为有些时候,当你有一个接近下一圈0°的数时,你会得到负数。例如,我们知道371是在0°上的数。如果你想要找到370.5所在的角度,就得到(370.5-371)/(10/45)=-2.25°。如果你得到负数,就加上360°来调整它。所以,这实际是357.75°。
    简单地调整一下这个公式,它就【变】成:if 角度<0 then 角度=角度+360 else 角度=角度[5]
    为了得到九方形里的其他值,使用这个公式:
    (圈号×2+1)2 -(7×圈号)+((圈号/45)×角度)
    在这个公式里的角度是你的输入值。例如,我们知道390是在85.5°上。如果我们想知道与它成45°的另一个数,我们就对130.50°(85.5°+45°)产生了兴趣。在上述公式中输入这个值,就得到:(10×2+1)2 -(7×10)+((10/45)×130.5)。简化一点,就得到371+28.99971=399.99,它与390成45°。请记住,如果你加上或减去一个值,使得原来的角度(85.5°)比360°大或比0°小,那么你就换一圈。例如,如果从85.5°减去90°得到一个直角相位,就得到-4.5°。加上360°就得到前一圈里的355.5°。我们在公式里使用圈号10,但是,在计算中我们必须使用圈号9。相似的,如果将85.5°加上315°,就得到400.50°,它是下一圈的40.5°。所以,你必须在计算中使用圈号11。
丹尼尔.费拉拉
    无论你选择使用弗蒂尔还是费拉拉的公式都会发现,在有能力的技术分析专家手里, 九方形是一个令人吃惊的强大工具,值得花时间去探索九方形方法。

[1] 以下条目1,2,3,4的排版和原文有差别。原文中是将条目下的详细内容放在条目上方,和中文习惯不同。这里做了修改。

[2] 占星术语,包括对相,四分相、八分相。

[3] 原文是“ABS”,这是求绝对值函数。根据上下文,应该是sqrt,求平方根函数。

[4] 原文“float”直译是“浮动”。指奇数平方不是在某天角度线上,而是浮动不定。

[5] 这是程序表达方式,其具体意思是:如果角度小于0 就加上360°,否则角度线不变。
作者: 天蓝蓝    时间: 2009-5-26 20:52
给喜欢9方图的兄弟
作者: adinos    时间: 2009-5-26 20:53
不错。
作者: yay    时间: 2009-5-27 08:30
原帖由 天蓝蓝 于 2009-5-26 12:52 发表
给喜欢9方图的兄弟

作者: bjqyzxxfawyl    时间: 2009-5-27 10:16
收到,谢谢
作者: jqbudd    时间: 2009-5-27 10:22
谢谢分享
作者: wuyin2025    时间: 2009-5-27 10:58

作者: new79man    时间: 2009-5-27 11:38
谢谢分享,下载收藏。
作者: tts073    时间: 2009-5-27 12:23

作者: xmhenry    时间: 2009-12-2 10:26

作者: s970701    时间: 2009-12-2 15:45

作者: mrgjy1818    时间: 2009-12-2 15:54
谢谢提供,太好了~~~~~~~~~~~~~~
作者: ghw6501    时间: 2009-12-2 22:34

作者: ths20236    时间: 2013-10-16 16:50

作者: s970701    时间: 2013-10-16 17:19





欢迎光临 【阳光飞狐__与财富同行】 (http://bbs.88158.cn/) Powered by Discuz! X3.2